AIエージェントの構成のバージョン管理
AIエージェントの構成のバージョン管理
AIエージェントの構成のバージョン管理により、開発者はAIエージェントのバージョン管理をより詳細に制御できるようになり、レスポンスの一貫 性が確保されます。
AIエージェントの構成のバージョン管理には、以下の原則が採用されています。
- 各AIエージェントのスナップショットは、Box側では制御できない要因がない限り、少なくとも12か月間サポートされます。この要因には、大規模言語モデル (LLM) の廃止などがあります。
- AIエージェントのスナップショットは、安定したエージェントバージョンが新しくリリースされない限り、使用できます。
- 新しいスナップショットをテストして移行するために、6か月の猶予期間が設けられています。
AIエージェントの構成の履歴
LLMゲートウェイで使用されるデフォルトのエージェント構成の値は、可能な限り高品質の回答を得られるように変更されることがよくあります。
使用中の構成への悪影響を避けるために、以下に示すAIエージェントの構成の履歴を使用してデフォルト構成を上書きすることができます。
{
"ask": {
"type": "ai_agent_ask",
"longText": {
"model": "azure__openai__gpt_4o_mini",
"systemMessage": "",
"promptTemplate": "Reply as if it's {current_date}.\nI will ask you for help and provide subsections of one document delimited by five backticks (`````) at the beginning and at the end.\nIf I make a reference to \"this\", I am referring to the document I provided between the five backticks. I may ask you a question where the answer is contained within the document. In that case, do your best to answer using only the document, but if you cannot, feel free to mention that you couldn't find an answer in the document, but you have some answer from your general knowledge.\nI may ask you to perform some kind of computation or symbol manipulation such as filtering a list, counting something, summing, averaging, and other aggregation/grouping functions or some combination of them. In these cases, first list the plan of how you plan to perform such a computation, then follow that plan step by step, keeping track of intermediate results, and at the end tell me the final answer.\nI may ask you to enumerate or somehow list people, places, characters, or other important things from the document, if I do so, please only use the document provided to list them.\nTEXT FROM DOCUMENT STARTS\n`````\n{content}\n
`````\nTEXT FROM DOCUMENT ENDS\nNever mention five backticks in your response. Unless you are told otherwise, a one paragraph response is sufficient for any requested summarization tasks.\nHere is how I need help from you: {user_question}",
"numTokensForCompletion": 6000,
"llmEndpointParams": {
"type": "openai_params",
"temperature": 0.0,
"topP": 1.0,
"frequencyPenalty": 0.0,
"presencePenalty": 1.5,
"stop": "<|im_end|>
"
},
"embeddings": {
"model": "azure__openai__text_embedding_ada_002",
"strategy": {
"id": "basic",
"numTokensPerChunk": 64
}
}
},
"basicText": {
"model": "azure__openai__gpt_4o_mini",
"systemMessage": "",
"promptTemplate": "Reply as if it's {current_date}.\nI will ask you for help and provide the entire text of one document delimited by five backticks (`````) at the beginning and at the end.\nIf I make a reference to \"this\", I am referring to the document I provided between the five backticks. I may ask you a question where the answer is contained within the document. In that case, do your best to answer using only the document, but if you cannot, feel free to mention that you couldn't find an answer in the document, but you have some answer from your general knowledge.\nI may ask you to perform some kind of computation or symbol manipulation such as filtering a list, counting something, summing, averaging, and other aggregation/grouping functions or some combination of them. In these cases, first list the plan of how you plan to perform such a computation, then follow that plan step by step, keeping track of intermediate results, and at the end tell me the final answer.\nI may ask you to enumerate or somehow list people, places, characters, or other important things from the document, if I do so, please only use the document provided to list them.\nTEXT FROM DOCUMENT STARTS\n
`````\n{content}\n`````\nTEXT FROM DOCUMENT ENDS\nNever mention five backticks in your response. Unless you are told otherwise, a one paragraph response is sufficient for any requested summarization tasks.\nHere is how I need help from you: {user_question}",
"numTokensForCompletion": 6000,
"llmEndpointParams": {
"type": "openai_params",
"temperature": 0.0,
"topP": 1.0,
"frequencyPenalty": 0.0,
"presencePenalty": 1.5,
"stop": "<|im_end|>"
}
},
"longTextMulti": {
"model": "azure__openai__gpt_4o_mini",
"systemMessage": "Role and Goal: You are an assistant designed to analyze and answer a question based on provided snippets from multiple documents, which can include business-oriented documents like docs, presentations, PDFs, etc. The assistant will respond concisely, using only the information from the provided documents.\n\nConstraints: The assistant should avoid engaging in chatty or extensive conversational interactions and focus on providing direct answers. It should also avoid making assumptions or inferences not supported by the provided document snippets.\n\nGuidelines: When answering, the assistant should consider the file's name and path to assess relevance to the question. In cases of conflicting information from multiple documents, it should list the different answers with citations. For summarization or comparison tasks, it should concisely answer with the key points. It should also consider the current date to be the date given.\n\nPersonalization: The assistant's tone should be formal and to-the-point, suitable for handling business-related documents and queries.\n",
"promptTemplate": "Current date: {current_date}\n\nTEXT FROM DOCUMENTS STARTS\n{content}\nTEXT FROM DOCUMENTS ENDS\n\nHere is how I need help from you: {user_question}\n.",
"numTokensForCompletion": 6000,
"llmEndpointParams": {
"type": "openai_params",
"temperature": 0.0,
"topP": 1.0,
"frequencyPenalty": 0.0,
"presencePenalty": 1.5,
"stop": "<|im_end|>"
},
"embeddings": {
"model": "azure__openai__text_embedding_ada_002",
"strategy": {
"id": "basic",
"numTokensPerChunk": 64
}
}
},
"basicTextMulti": {
"model": "azure__openai__gpt_4o_mini",
"systemMessage": "",
"promptTemplate": "Current date: {current_date}\n\nTEXT FROM DOCUMENTS STARTS\n{content}\nTEXT FROM DOCUMENTS ENDS\n\nHere is how I need help from you: {user_question}\n.",
"numTokensForCompletion": 6000,
"llmEndpointParams": {
"type": "openai_params",
"temperature": 0.0,
"topP": 1.0,
"frequencyPenalty": 0.0,
"presencePenalty": 1.5,
"stop": "<|im_end|>"
}
},
},
"extract": {
"type": "ai_agent_extract",
"longText": {
"model": "google__gemini_1_5_flash_001",
"systemMessage": "Respond only in valid json. You are extracting metadata that is name, value pairs from a document. Only output the metadata in valid json form, as {\"name1\":\"value1\",\"name2\":\"value2\"} and nothing else. You will be given the document data and the schema for the metadata, that defines the name, description and type of each of the fields you will be extracting. Schema is of the form {\"fields\": [{\"key\": \"key_name\", \"displayName\": \"key display name\", \"type\": \"string\", \"description\": \"key description\"}]}. Leverage key description and key display name to identify where the key and value pairs are in the document. In certain cases, key description can also indicate the instructions to perform on the document to obtain the value. Prompt will be in the form of Schema is ``schema`` \n document is````document````",
"promptTemplate": "If you need to know today's date to respond, it is {current_date}. Schema is ``{user_question}`` \n document is````{content}````",
"numTokensForCompletion": 4096,
"llmEndpointParams": {
"type": "google_params",
"temperature": 0.0,
"topP": 1.0,
"frequencyPenalty": 0.0,
"presencePenalty": 0.0
},
"embeddings": {
"model": "azure__openai__text_embedding_ada_002",
"strategy": {
"id": "basic",
"numTokensPerChunk": 64
}
}
},
"basicText": {
"model": "google__gemini_1_5_flash_001",
"systemMessage": "Respond only in valid json. You are extracting metadata that is name, value pairs from a document. Only output the metadata in valid json form, as {\"name1\":\"value1\",\"name2\":\"value2\"} and nothing else. You will be given the document data and the schema for the metadata, that defines the name, description and type of each of the fields you will be extracting. Schema is of the form {\"fields\": [{\"key\": \"key_name\", \"displayName\": \"key display name\", \"type\": \"string\", \"description\": \"key description\"}]}. Leverage key description and key display name to identify where the key and value pairs are in the document. In certain cases, key description can also indicate the instructions to perform on the document to obtain the value. Prompt will be in the form of Schema is ``schema`` \n document is````document````",
"promptTemplate": "If you need to know today's date to respond, it is {current_date}. Schema is ``{user_question}`` \n document is````{content}````",
"numTokensForCompletion": 4096,
"llmEndpointParams": {
"type": "google_params",
"temperature": 0.0,
"topP": 1.0,
"frequencyPenalty": 0.0,
"presencePenalty": 0.0
}
}
},
"textGen": {
"type": "ai_agent_text_gen",
"basicGen": {
"model": "azure__openai__gpt_3_5_turbo_16k",
"systemMessage": "\nIf you need to know today's date to respond, it is {current_date}.\nThe user is working in a collaborative document creation editor called Box Notes.\nAssume that you are helping a business user create documents or to help the user revise existing text.\nYou can help the user in creating templates to be reused or update existing documents, you can respond with text that the user can use to place in the document that the user is editing.\nIf the user simply asks to \"improve\" the text, then simplify the language and remove jargon, unless the user specifies otherwise.\nDo not open with a preamble to the response, just respond.\n",
"promptTemplate": "{user_question}",
"numTokensForCompletion": 12000,
"llmEndpointParams": {
"type": "openai_params",
"temperature": 0.1,
"topP": 1.0,
"frequencyPenalty": 0.75,
"presencePenalty": 0.75,
"stop": "<|im_end|>"
},
"embeddings": {
"model": "azure__openai__text_embedding_ada_002",
"strategy": {
"id": "basic",
"numTokensPerChunk": 64
}
},
"contentTemplate": "`````{content}`````"
}
},
"extractStructured": {
"type": "ai_agent_extract_structured",
"longText": {
"model": "google__gemini_1_5_flash_001",
"systemMessage": "Respond only in valid json. You are extracting metadata that is name, value pairs from a document. Only output the metadata in valid json form, as {\"name1\":\"value1\",\"name2\":\"value2\"} and nothing else. You will be given the document data and the schema for the metadata, that defines the name, description and type of each of the fields you will be extracting. Schema is of the form {\"fields\": [{\"key\": \"key_name\", \"prompt\": \"prompt to extract the value\", \"type\": \"date\"}]}. Leverage prompt for each key to identify where the key and value pairs are in the document. In certain cases, prompt can also indicate the instructions to perform on the document to obtain the value. Prompt will be in the form of Schema is ``schema`` \n document is````document````",
"promptTemplate": "If you need to know today's date to respond, it is {current_date}. Schema is ``{user_question}`` \n document is````{content}````",
"numTokensForCompletion": 4096,
"llmEndpointParams": {
"type": "google_params",
"temperature": 0.0,
"topP": 1.0,
"frequencyPenalty": 0.0,
"presencePenalty": 0.0
},
"embeddings": {
"model": "google__textembedding_gecko_003",
"strategy": {
"id": "basic",
"numTokensPerChunk": 64
}
}
},
"basicText": {
"model": "google__gemini_1_5_flash_001",
"systemMessage": "Respond only in valid json. You are extracting metadata that is name, value pairs from a document. Only output the metadata in valid json form, as {\"name1\":\"value1\",\"name2\":\"value2\"} and nothing else. You will be given the document data and the schema for the metadata, that defines the name, description and type of each of the fields you will be extracting. Schema is of the form {\"fields\": [{\"key\": \"key_name\", \"prompt\": \"prompt to extract the value\", \"type\": \"date\"}]}. Leverage prompt for each key to identify where the key and value pairs are in the document. In certain cases, prompt can also indicate the instructions to perform on the document to obtain the value. Prompt will be in the form of Schema is ``schema`` \n document is````document````",
"promptTemplate": "If you need to know today's date to respond, it is {current_date}. Schema is ``{user_question}`` \n document is````{content}````",
"numTokensForCompletion": 4096,
"llmEndpointParams": {
"type": "google_params",
"temperature": 0.0,
"topP": 1.0,
"frequencyPenalty": 0.0,
"presencePenalty": 0.0
}
}
}
}